

Given $f(x) = 2x^2 - 5x + 3$ and g(x) = 6x + 4, find each function. (Lesson 7-1)

1. $(f + g)(x)$	2. $(f - g)(x)$
3. $(f \cdot g)(x)$	4. $\left(\frac{f}{g}\right)(x)$
5. $[f \circ g](x)$	6. $[g \circ f](x)$

DINING For Exercises 7 and 8, use the following information. (Lesson 7-1)

The Rockwell family goes out to dinner at Jack's Fancy Steak House. They have a coupon for 10% off their meal, but this restaurant adds an 18% gratuity.

- 7. Express the price of the meal after the discount and the price of the meal after the gratuity gets added using function notation. Let *x* represent the price of the meal, *p*(*x*) represent the price after the 10% discount, and *g*(*x*) represent the price after the gratuity is added to the bill.
- **8.** Which composition of functions represents the price of the meal, *p*[*g*(*x*)] or *g*[*p*(*x*)]? Explain your reasoning.

Determine whether each pair of functions are inverse functions. (Lesson 7-2)

9. $f(x) = x + 73$	10. $g(x) = 7x - 11$
g(x) = x - 73	$h(x) = \frac{1}{7}x + 11$

REMODELING For Exercises 11 and 12, use the following information. (Lesson 7-2)

Kimi is replacing the carpet in her 12-foot by 15-foot living room. The new carpet costs \$13.99 per square yard. The formula f(x) = 9x converts square yards to square feet.

- **11.** Find the inverse $f^{-1}(x)$. What is the significance of $f^{-1}(x)$ for Kimi?
- **12.** What will the new carpet cost Kimi?

Graph each inequality. (Lesson 7-3) **13.** $y < \sqrt{x+3}$ **14.** $y \ge -5\sqrt{x}$

Graph each function. State the domain and range of each function. (Lesson 7-3)

15. $y = 3 - \sqrt{x}$ **16.** $y = \sqrt{5x}$ **17.** $y = \sqrt{2x - 7} + 4$ **18.** $y = -2\sqrt{6x - 1}$ **19. MULTIPLE CHOICE** What is the domain of $f(x) = \sqrt{5x - 3}$?

$$\mathbf{A} \quad \left\{ x \middle| x > \frac{3}{5} \right\}$$
$$\mathbf{B} \quad \left\{ x \middle| x > -\frac{3}{5} \right\}$$
$$\mathbf{C} \quad \left\{ x \middle| x \ge \frac{3}{5} \right\}$$
$$\mathbf{D} \quad \left\{ x \middle| x \ge -\frac{3}{5} \right\}$$

Simplify. (Lesson 7-4)

20.
$$\sqrt{36x^2y^6}$$
 21
22. $\sqrt{4n^2 + 12n + 9}$ **23**

21. $\sqrt[3]{-64a^6b^9}$ **23.** $\sqrt{\frac{x^4}{y^3}}$

- **24. MULTIPLE CHOICE** The relationship between the length and mass of Pacific Halibut can be approximated by the equation $L = 0.46\sqrt[3]{M}$, where *L* is the length in meters and *M* is the mass in kilograms. Use this equation to predict the length of a 25-kilogram Pacific Halibut. (Lesson 7-4)
 - **F** 1.03 m
 - **G** 1.35 m
 - **H** 1.97 m
 - J 2.30 m
- **25. BASEBALL** Refer to the drawing below. How far does the catcher have to throw a ball from home plate to second base? (Lesson 7-4)

